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DEEP MOTIVATIONS

* Brains have a deep architecture.

 Humans organize their ideas hierarchically,
through composition of simpler ideas.

* Insufficiently deep architectures can be
exponentially inefficient.

* Distributed (possibly sparse) representations are
necessary to achieve non-local generalization.

* Multiple levels of latent variables allow
combinatorial sharing of statistical strength.
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ARCHITECTURAL DEPTH
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ARCHITECTURAL DEPTH

(r129)(XoX3) + (r129)(2324) + (X2X3)™ + (X2X3)(2X324)

Polynomial expressed with
shared components:

advantage of depth may
grow exponentially
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| GENERALIZATION FROM DEPTH

Generalizing better to new tasks is resc fask 2 fask 3
output yi output y2 output y3

crucial to Al

Deep architectures learn good
intermediate representations that can
be shared across tasks

A good representation is one that
makes sense for many tasks

shared
infermediate
representation h

raw input x _
From Bengio (2009)
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CLASSIC CL — MEANING

Python 3.4.1... on win32

>>> nltk.corpus wordnet as

>>> platypus = wn.synset ( )

>>> hyper = s: s.hypernyms ()

>>> (platypus.closure (hyper))

[Synset ('monotreme.n.01'), Synset('prototherian.n.01'), Synset('mammal.n.01'),

(

Synset ('vertebrate.n.01'), Synset('chordate.n.01l'), Synset('animal.n.01'),
(
(

Synset ('organism.n.01"'), Synset('living thing.n.0l1'), Synset('whole.n.02'),
Synset ('object.n.01'), Synset('physical entity.n.01'), Synset('entity.n.01'")]
>>>

Well, this sort of representation can be applied to many different
tasks...
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| CLASSIC CL — LEARNING

Classic NLP He is walking away...

Feature Machine

fAT representation learning

Output

Simple tokenization

Task: find all verbs in a sentence Morphological

» Manually define a good, meaningful representation analysis

E.g., ends on -ed, -ing, +front/high vowel : :
. 2 /hig Syntactic analysis

» But what about spelling mistakes? Or slang?

E.g., ends on -edd, -in, -inn,... Verb, present particle

» You can NEVER define all features manually!
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CLASSIC SPEECH
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CLASSIC SPEECH

Amplitude
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CLASSIC SPEECH

Output sound ~=========-—=> > Output spectrum
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NEW CL

Classic NLP

He is walking away...

Feature Machine

Tt representation learning

Output

Simple tokenization
Deep learning NLP Morphological
analysis

Feature Machine

: : Output
represenfation learning Syntactic analysis

» Automatically learn the feature representation, too!
(because it's 2015)

Input

Verb, present particle
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| DEEP LEARNING IN SPEECH

Magic deep thingie

“We have no idea how
speech works”
- [someone from
Stanford]

27 4%

18.5%
(-33%)

From Socher (2015)

From Jaitly (2014)
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WORDS

« Given a corpus with D (e.g., = 100K) unique words,
the classical binary approach is to uniquely assign
each word with an index in D-dimensional vectors
(‘one-hot’ representation).

D

» Classic word-feature representation assigns features

to each index.
- E.g. 'VBG', ‘positive’, ‘age-of-acquisition’.

d<D
 |s there a way to learn something like the lattere
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SINGULAR VALUE DECOMPOSITION

PCA
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| SINGULAR VALUE DECOMPOSITION
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Co-occurrence
Rohde et al. (2006) An Improved Model of Semantic
Similarity Based on Lexical Co-Occurrence.
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| SINGULAR VALUE DECOMPOSITION
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Rohde et al. (2006) An Improved Model of Semantic
Similarity Based on Lexical Co-Occurrence.
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SINGULAR VALUE DECOMPOSITION

ORUS
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Rohde et al. (2006) An Improved Model of Semantic
Similarity Based on Lexical Co-Occurrence.
Communications of the ACM 8:627-633.
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SINGULAR VALUE DECOMPOSITION
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| PROBLEMS WITH SVD; INTRO TO WORD2VEC

* SVD: Computational costs scale quadratically with M.
‘Hard’ to incorporate new words.

* Word2vec: Don’t capture co-occurrence directly
Just try to predict surrounding words, baby.

P(w¢yq = yourself |w; = kiss)

s ' N ™~
you go kiss yourself ,
you go hug yourself , SR
exp( )
P(w,|w;) =
V\M//=1 eXp( )
Where is the ‘input’ vector for word w,

and is the ‘output’ vector for word w,
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https://code.google.com/p/word2vec/

LEARNING WORD REPRESENTATIONS

* Word representations can be learned using the following

objective function:
T

J@ =2 Y logP(werlwe)

t=1—-c<j<c,j#0

where w; is the t'* word in a sequence of T words.
* This is closely related to word prediction. ~N
e “words of a feather flock together.” go kiss yourself
*  “you shall know a word by the company it keeps.” go hug yourself

- J.R. Firth (1957)
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| LEARNING WORD REPRESENTATIONS

4
Note: we now
have two
representations

X ) : y of each word:

comes from
the rows of W;
I/, comes from
the cols of W,
v

[0,0,0,...1, ..., 0] s N N [0,1,0,...,0,...,0] go

kiss go kiss yourself [0,0.1,...,0, .., 0] yourself

»

A

D = 100K
D = 100K

\4

go hug yourself Continuous bag of words

(CBOW)

(13 . ” kke . ” (13 . LL)
outside inside outside
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| USING WORD REPRESENTATIONS

Without a latent space,
kiss= 1[0,0,0,...,0,1,0, ...,0], &
hug = [0,0,0,...,0,0,1, ...,0] so
Similarity = cos(x,y) = 0.0

s

In latent space, )
kiss = [0.8,0.69,0.4, ...,0.05],, & e
hug = [0.9,0.7,0.43, ...,0.05]4 so

Similarity = cos(x,y) = 0.9

D = 100K
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LINGUISTIC REGULARITIES IN
WORD-VECTOR SPACE

Visualization of a vector space of the top 1000 words in Twitter

Trained on 400 million tweets having 5 billion words
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LINGUISTIC REGULARITIES IN
WORD-VECTOR SPACE

Chinac
»Beijing
Russia«
Japark
Moscow
Turkey Ankara *Tokyo

Polandk

Germany«
France ANarsaw

w—Berlin
Italr-: Paris

#thens

Greece: ‘Rome

Spain¢

Portugal

Trained on the Google news corpus with over 300 billion words.
10 NEURAL MODELS OF WORD REPRESENTATIONS :: CSC2501 /485 :: SPRING 2015 :: FRANK RUDZICZ

24



LINGUISTIC REGULARITIES IN
WORD-VECTOR SPACE

Paris — France + ltaly Rome

Bigger — big + cold Colder

Sushi — Japan + Germany bratwurst
Cu — copper + gold Au
Windows — Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture

Ha ha — isn’t that nice? But it’s easy to cherry-pick...
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ACTUALLY DOING THE LEARNING

First, let’s define what our parameters are.

Given H-dimensional vectors, and V' words:
— v —
a

Vaardvark

Vzymurgy
o= "y  |eR¥H
a

Vaardvark

L szmurgy |
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ACTUALLY DOING THE LEARNING

Many options. Gradient descent is popular.
We want to optimize
T
1 “outside” “inside”
J@=3) ). 1ogP(werIwo)
t=1—-c<j<c,j*0
And we want to update vectors then within 6
Q(new) — Q(Old) . 77\79](0)
so we’'ll need to take the derivative of the (log of the)
softmax function:

P(we j|we)

exp(U, )
- ZW=1 exp( )
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ACTUALLY DOING THE LEARNING

We need to take the derivative of the (log of the)
softmax function:

51P(|)_51e><p( )
S, o e O W o (V1)

S w
5 log exp( ) — log ZW:1exp(

S w
= Wwey — ; logEWZlexp( )

Sf _ &f 62]
T 6z6

[apply the chain rule -

w
= - Z p(wlw,)
w=1
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More details:


http://arxiv.org/pdf/1411.2738.pdf

SMELL THE GLOVE

GIObaI vecfors for Word representations iS d pOpUICII' Cllferndﬁve 1.0
word2vec.

Trained on the non-zero entries of a global word-word co-occurrence matrix.

1
J(6) = Ezijf(P”)(Wi - Wj — log Pij)z

Fast and scalable.
Same kinds of benefits

a“ #z
Words close %ﬁ _ P
to frog ,,.‘

3. litoria 4.—I‘ep od"c?g;? ae
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http://nlp.stanford.edu/projects/glove/

LOOK AT THE GLOVE

* niece

r heiress

» countess
4 duchess

0
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LOOK AT THE GLOVE
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LOOK AT THE GLOVE
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RESULTS — NOTE THEY'RE ALL EXTRINSIC

Bengio et al 2001, 2003: beating N-grams on small datasets (Brown
& APNews), but much slower.

Schwenk et al 2002,2004,2006: beating state-of-the-art large-

vocabulary speech recognizer using deep & distributed NLP model,
with real-time speech recognition.

Morin & Bengio 2005, Blitzer et al 2005, Mnih & Hinton 2007,2009:
better & faster models through hierarchical representations.

Collobert & Weston 2008: reaching or beating state-of-the-art in
multiple NLP tasks (SRL, POS, NER, chunking) thanks to unsupervised
pre-training and multi-task learning.

Bai et al 2009: ranking & semantic indexing (info retrieval).
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| SENTIMENT ANALYSIS

Traditional bag-of-words approach used dictionaries of

happy and sad words, simple counts, and regression or
simple binary classification.

But consider these:

movie of the year

and , despite a script

and but ultimately
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SENTIMENT ANALYSIS

We can combine pairs of words into phrase structures.
Similarly, we can combine phrase and word structures
hierarchically for classification.

X1,.2 A
O
© ©
does n't

H =300
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TREE-BASED SENTIMENT ANALYSIS

(currently broken) demo:
http:/ /nlp.stanford.edu/sentiment /

does n’t care @ @
about @ o
e © @ e
@ @ ® © B

@ @ wit any @ @ of®.-- ‘ o

cleverness other kind intelligent humor
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RECURRENT NEURAL NETWORKS (RNNS)

An RNN has feedback connections in its structure so that
it ‘remembers’ n previous inputs, when reading in a

sequence.
(e.g., can use current word input with hidden units from
previous word)

y
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RECURRENT NEURAL NETWORKS (RNNS)

Elman network feed
hidden units back

300 + 200

Whn

D

Jordan network (not shown)

feed output units back
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RNNS ON POS TAGGING

You can ‘unroll’ RNNs over time for various
dynamic models, e.g., PoS tagging.

S
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STATISTICAL MACHINE TRANSLATION

SMT is not as easy as PoS.

S

Lexical ambiguity (‘kill the Queen’ vs. ‘kill the queen’)
Different word orders (‘the blue house’ vs. ‘la maison bleu’)
Unpreserved syntax

Syntactic ambiguity

|diosyncrasies (‘estie de sacremouille’)

Different sequence lengths across languages
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MACHINE TRANSLATION
WITH RNNS

Solution: Encode entire sentence into 1 vector
representation, then decode.
=4 =5

t=1 t=2 t=3 .
representation
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MACHINE TRANSLATION
WITH RNNS

Try it ( ). 30K vocabulary,
500M word training corpus (taking 5 days on GPUs)

* All that good morphological /syntactic/semantic stuff we've
seen eadrlier gets embedded into sentence vectors.

M

Sentence

DECO DE

representation 10 NEURAL MODELS OF WORD REPRESENTATIONS -: CSC2501/485 -: SPRING 2015 FRANKRUDZICZ 42


http://104.131.78.120/

| WRAP-UP

‘Negative sampling’: n. contrast random ‘correct’ instances with
negative similar examples.

‘skip-gram’: n. the opposite of CBOW,; it predicts the
context given the centre word rather than
the inverse.

With slide material from Yoshua Bengio, Fréderic Godin, Richard
Socher, and others (where indicated).
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